Dual semantic interdependencies attention network for person re‐identification
نویسندگان
چکیده
منابع مشابه
Harmonious Attention Network for Person Re-Identification
Existing person re-identification (re-id) methods either assume the availability of well-aligned person bounding box images as model input or rely on constrained attention selection mechanisms to calibrate misaligned images. They are therefore sub-optimal for re-id matching in arbitrarily aligned person images potentially with large human pose variations and unconstrained auto-detection errors....
متن کاملPerson Reidentification and Recognition in Video
Person recognition has been a challenging research problem for computer vision researchers for many years. A variation of this generic problem is that of identifying the reappearance of the same person in different segments to tag people in a family video. Often we are asked to answer seemingly simple queries such as ‘how many different people are in this video? or ‘find all instances of this p...
متن کاملDual Attention Matching Network for Context-Aware Feature Sequence based Person Re-Identification
Typical person re-identification (ReID) methods usually describe each pedestrian with a single feature vector and match them in a task-specific metric space. However, the methods based on a single feature vector are not sufficient enough to overcome visual ambiguity, which frequently occurs in real scenario. In this paper, we propose a novel endto-end trainable framework, called Dual ATtention ...
متن کاملA Multi-staged System for Efficient Visual Person Reidentification
An important field in today’s computer vision is person centric video analysis. The basis of this person centric analysis is the detection and tracking of people in video data. In many cases it is not sufficient to track people when they continuously appear in the camera’s field of view, but to also reacquire a track after a person has left a field of view and reenters it. In this paper, we int...
متن کاملDual Attention Network for Visual Question Answering
Visual Question Answering (VQA) is a popular research problem that involves inferring answers to natural language questions about a given visual scene. Recent neural network approaches to VQA use attention to select relevant image features based on the question. In this paper, we propose a novel Dual Attention Network (DAN) that not only attends to image features, but also to question features....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2020
ISSN: 0013-5194,1350-911X
DOI: 10.1049/el.2020.1786